
Honeywell® Captuvo SDK - Getting Started

Copyright © 2012 Honeywell International Inc., All Rights Reserved

Setting up Xcode Environment

The Captuvo SDK contains two files that must be included in a project for it to be

successfully used. The Captuvo.h header file and the static library

libHoneywell_SDK.a. It is recommended that a folder be created in your project

and both of these files be copied into it.

To include the header file simply drag and drop it into your current project. Xcode

will then prompt you with options for adding the file. You must select each target

that will be built using the SDK. You will also have the option of coping the file

into the destination. If you have already copied it into the project as mentioned

before, this does not need to be done.

The static library also must be added to the project. To add the static library

select your project file from the file navigator. With the project selected, choose

the desired target and scroll down to the Linked Frameworks and Library section.

It is possible to add the library by either dragging and dropping it here or using

the add library button. Once the library is added it should be visible in the list of

libraries and in the file navigator. It is also required that the

ExternalAccessory.framework be added here as well when using the Captuvo

SDK. It can be added by pressing the add button and finding it in the list of Apple

provided frameworks.

With both files added, it should now be possible to build a project using the

library. The libHoneywell_SDK.a is compiled as a fat binary and is compatible

with both armv6 (iOS device) and i386 (simulator).

Initializing and Using the SDK

The Captuvo SDK uses a singleton data pattern. To initialize the SDK you simply

have to access it. By requesting a shared object the SDK will either return the

current valid SDK object or create a new one. The following code is an example

of how the SDK should be used.

[[Captuvo sharedCaptuvoDevice]getCaptuvoSerialNumber]

In this example a sharedCaptuvoDevice (the shared object for the SDK) is

obtained and then the SDK method getCaptuvoSerialNumber is called. The

Captuvo object may be stored locally but is not required to be since there is very

little overhead in requesting the sharedCaptucoDevice.

The Captuvo SDK loosely follows the delegate data pattern for returning

requested data. In the normal delegate pattern an object (A) typically will become

the delegate for another object (B) when A is composed of B, and A and B have

a one to one relationship. The SDK differs in this pattern since the calling objects

only have a loose association with the SDK object and there is a many to one

relationship between the single SDK object and the many users of it. The SDK

allows multiple objects to register to be a delegate. This is done with the following

method:

-(void)addCaptuvoDelegate:(id<CaptuvoEventsProtocol>)delegate

The object must implement the CaptuvoEventsProtocol. Once an object is added

as delegate it will then be notified of events via the methods in the

CaptuvoEventsProtocol. The object is only required to implement the protocol

methods that are of interest to that object.

It is best to remove an object from the delegate list when it is about to be

unallocated or is no longer interested in the protocol events. However this is not

required and the SDK will cleanup delegates that have become unallocated. To

remove an object as a delegate the follow method can be used:

-(void)removeCaptuvoDelegate:(id<CaptuvoEventsProtocol>)delegate

The Captuvo SDK is not thread safe and may have unexpected results if used

concurrently on multiple threads.

Working with the Decoder

The decoder is the subsystem that is responsible for scanning and processing

barcodes. To work with this subsystem it must be activated from the SDK. To

activate the decoder the following method is used:

-(ProtocolConnectionStatus)startDecoderHardware

This method will return a ProtocolConnectionStatus enumeration that should be

checked to ensure there were no errors starting the hardware. Once the decoder

is activated it can then be used and configured. If the decoder is not activated

then any decoder method will have no effect and will simply return. It is

recommended to shut down the decoder when it is not being used to conserve

battery power. To shut it down the following method is used:

-(void)stopDecoderHardware

Once the decoder is activated it can begin to scan barcodes by pressing the side

trigger. In this simple example the object(s) that are interested in getting the

results of the scan would implement the CaptuvoEventsProtocol, and the

following method:

-(void)decoderDataReceived:(NSString*)data

-(void)decoderRawDataReceived:(NSData*)data

This method will be called with the data that was read from the barcode. Every

object that is a delegate of the SDK and has this method implemented, will

receive the data. See the SDK documentation for information on advance

decoder features.

Working with the MSR

The MSR (mag strip reader) is the subsystem for reading swiped cards. To work

with this subsystem it must be activated. To activate the MSR the following

method is used:

-(ProtocolConnectionStatus)startMSRHardware

This method will return a ProtocolConnectionStatus enumeration that should be

checked to ensure there were no errors starting the hardware. Once the MSR is

activated it can then be used and configured. If the MSR is not activated then any

MSR method will have no effect and will simply return. It is recommended to

shutdown the MSR when it is not being used to conserve battery power. To shut

it down the following method is used, note that it takes about a second until the

MSR can be started again:

-(void)stopMSRHardware

Cards can be swiped once the MSR is active. For an object to receive the swiped

data they must implement the CaptuvoEventsProtocol, and one of the following

methods:

-(void)msrStringDataReceived:(NSString*)data validData:(BOOL)status

-(void)msrRawDataReceived:(NSData*)data validData:(BOOL)status

The first will provide the data from the card as a string and the second will

provide the data as raw bytes. See the SDK documentation for information on

advance MSR features.

Power Management

The SDK provides methods for getting the battery status and the remaining

battery life of the Captuvo device. The following SDK method provides the

charge status:

-(ChargeStatus)getChargeStatus

The Charge status will either be: not charging, charging, fully charged, or

undefined. The status will only be undefined for a brief period at start up and in

error conditions. It is also possible to use a CaptuvoEventsProtocol delegate

method to get notified of a change in this status. That method is listed below:

-(void)pmChargeStatusChange:(ChargeStatus)newChargeStatus

The SDK is capable of reporting the remaining battery life in granularities of

1/4th’s. The method to request this data is as follows:

-(BatteryStatus)getBatteryStatus

The Battery status will be one of the following: 0 of 4 (empty), 1 of 4 (1 bar), 2 of

4 (2 bars), 3 of 4 (3 bars), 4 of 4 (full or 4 bars), or external source connected. It

is also possible to be notified of changes to this status by using the

CaptuvoEventsProtocol delegate method:

-(void)pmBatteryStatusChange:(BatteryStatus)newBatteryStatus

The SDK also provides two warning delegate methods that should be

implemented somewhere in every app. One is a low battery warning and the

second is a battery dead shutdown. The low battery warning

CaptuvoEventsProtocol delegate method is listed below:

-(void)pmLowBatteryWarning

Once a low battery warning is issued the app should notify the user. At this point

the sled will continue to operate but the remaining battery life is very low. A

depleted battery shutdown will follow if the battery is not connected to an external

power source. The following is the CaptuvoEventsProtocol delegate method for a

shutdown.

-(void)pmLowBatteryShutdown

Once a shutdown is issued both the decoder and MSR are shut down and are

unable to be restarted. If they are startup up again they will return a

ProtocolConnectionStatusUnableToConnectIncompatiableSledFirmware status.

Since the Decoder and at a lesser degree the MSR, use the most power it is best

to shut down both when they are not needed by the user. Both the decoder and

MSR will continue to run when the screen locks on the iOS devices either by the

user pressing the lock button or by a time out. It is best to use the iOS notification

UIApplicationWillResignActiveNotification to shutdown these systems in order to

conserve battery life.

